On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the behavior of Lagrange multipliers in convex and non-convex infeasible interior point methods∗

This paper analyzes sequences generated by infeasible interior point methods. In convex and nonconvex settings, we prove that moving the primal feasibility at the same rate as complementarity will ensure that the Lagrange multiplier sequence will remain bounded, provided the limit point of the primal sequence has a Lagrange multiplier, without constraint qualification assumptions. We also show ...

متن کامل

Counter Example to a Conjecture on Infeasible Interior-point Methods

Based on extensive computational evidence (hundreds of thousands of randomly generated problems) the second author conjectured that κ̄(ζ) = 1 (Conjecture 5.1 in [1]), which is a factor of √ 2n better than has been proved in [1], and which would yield an O( √ n) iteration full-Newton step infeasible interior-point algorithm. In this paper we present an example showing that κ̄(ζ) is in the order of...

متن کامل

Detecting Infeasibility in Infeasible-Interior-Point Methods for Optimization

We study interior-point methods for optimization problems in the case of infeasibility or unboundedness. While many such methods are designed to search for optimal solutions even when they do not exist, we show that they can be viewed as implicitly searching for well-defined optimal solutions to related problems whose optimal solutions give certificates of infeasibility for the original problem...

متن کامل

Polynomial Convergence of Infeasible-Interior-Point Methods over Symmetric Cones

We establish polynomial-time convergence of infeasible-interior-point methods for conic programs over symmetric cones using a wide neighborhood of the central path. The convergence is shown for a commutative family of search directions used in Schmieta and Alizadeh [9]. These conic programs include linear and semidefinite programs. This extends the work of Rangarajan and Todd [8], which establi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2019

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-019-01454-4